
Why Moments (and Generalized
Moments) Are Used in Statistics
and Why Expected Utility Is
Used in Decision Making:
A Possible Explanation

R. Noah Padilla and Vladik Kreinovich

Department of Computer Science, University of Texas at El Paso
El Paso, TX 79968, USA, rnpadilla2@miners.utep.edu, vladik@utep.edu



1. Formulation of the Problem

� In this talk, we provide a new explanation of two seemingly unrelated
phenomena.

� The first is that moments, and, more generally, generalized moments,

M =
n∑

i=1

pi · f(xi) are effectively used in statistics.

� E.g., they help decide which approximate model is more accurate.

� The second is that expected utility
n∑

i=1

pi · u(xi) is effectively used in

decision making to decide which action is better.

� For moments, xi are different observed values.

� For decision making, xi are the outcomes of different situations.

� In both cases, pi are the probabilities of these values or situations.



2. We Need Faster Computations

� In many computational problems, computation time is still a big prob-
lem.

� A natural way to speed up computations is to parallelize computa-
tions:

– first, several processors process data,

– then they process the results of the first-stage processing, etc.

� To speed up computations, we need:

– to minimize the number of stages and

– to minimize the time needed for each stage.

� On each stage, what each processor in a deterministic computer com-
putes is a function of its inputs.



3. Which Functions Should We Compute on Each Stage

� The simplest – and thus fastest to compute – are linear functions.

� However, if only use linear stages:

– the result will still be a linear function of its inputs, and

– many real-world dependencies are nonlinear.

� Thus, on some stages, we need to compute nonlinear functions.

� In general, the fewer inputs, the faster it is to compute a function.

� Thus, the fastest to compute are functions of one variable.

� So, on each stage, each processor computes either a linear function,
or a function of one variable.



4. Consequent Stages

� It makes no sense to have two consequent stages computing linear
functions.

� Indeed, the resulting composition of linear functions is also linear,
and it can this be computed in a single stage.

� It also does not make sense to have two consequent stages computing
functions of one variable.

� Indeed, the composition of such functions is still a function of one
variable.

� Thus, to speed up computations, we need consequent stages to be
different.



5. How Many Stages Do We Need

� The fastest is when we use only one stage.

� However, in this case, we:

– either compute a linear function – while many real-life functions
are nonlinear

– or use only one input – while we want to take all the inputs xi
into account.

� So, we need at least two stages.



6. Two Stages: First Option

� Due to the above, these stage must be different.

� If the first stage is linear and the following one nonlinear, then, in
general, we compute a function

f

(
a0 +

n∑
i=1

ai · xi

)
.

� Comparing such values is equivalent to comparing the corresponding

linear combinations a0 +
n∑

i=1

ai · xi.



7. Two Stages: Second Option

� If the first stage is nonlinear and the second one linear, then we com-

pute expressions a0 +
n∑

i=1

ai · fi(xi).

� This provides a more general opportunities for comparison.

� In particular:

– if a priori, we have no reason to prefer some i’s,

– then it makes sense to use the same nonlinear function
fi(x) = f(x) to process all the inputs.

� Thus, we get the expression a0 +
n∑

i=1

ai · f(xi).

� This is exactly what is used when we use generalized moments or
expected utility.

� Thus, we have indeed explained the desired expressions.



8. Acknowledgments

� This work was supported in part by the National Science Foundation
grants:

– 1623190 (A Model of Change for Preparing a New Generation for
Professional Practice in Computer Science), and

– HRD-1834620 and HRD-2034030 (CAHSI Includes).

� It was also supported by the AT&T Fellowship in Information Tech-
nology.

� It was also supported by the program of the development of the
Scientific-Educational Mathematical Center of Volga Federal District
No. 075-02-2020-1478.


	Formulation of the Problem
	We Need Faster Computations
	Which Functions Should We Compute on Each Stage
	Consequent Stages
	How Many Stages Do We Need
	Two Stages: First Option
	Two Stages: Second Option
	Acknowledgments

